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Abstract The n-electron valence state perturbation
theory (NEVPT) is a form of multireference pertur-
bation theory which is based on a zero order refer-
ence wavefunction of CAS-CI type (complete active
space configuration interaction) and which is charac-
terized by the utilization of correction functions (zero
order wavefunctions external to the CAS) of multire-
ference nature, obtained through the diagonalization
of a suitable two-electron model Hamiltonian (Dyall’s
Hamiltonian) in some well defined determinant spaces.
A review of the NEVPT approach is presented, start-
ing from the original second order state-specific formu-
lation, going through the quasidegenerate multi-state
extension and arriving at the recent implementations of
the third order in the energy and of the internally con-
tracted configuration interaction. The chief properties
of NEVPT—size consistence and absence of intruder
states—are analyzed. Finally, an application concerning
the calculation of the vertical spectrum of the biologi-
cally important free base porphin molecule, is presented.

Keywords Multireference perturbation theory ·
NEVPT · Internally contracted CI · Free base porphin

1 Introduction

Multireference perturbation theories (MRPT) play an
important rôle in the treatment of electronic correlation
in molecules. In many molecular phenomena such as the
breaking of a chemical bond or the electronic transition
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to an excited state, a single reference wavefunction does
not suffice to provide a reasonable approximation to the
solution of the time independent Schrödinger equation;
many electronic configurations can be important and a
zero order description of the electronic structure of the
molecule may not leave out of consideration such quasi-
degenerate configurations. The inclusion of the quasi-
degenerate configurations accounts for what is called
the static (or non-dynamical) correlation; the rest of the
correlation energy (the dynamical component) could be
dealt with perturbationally with a suitable MRPT which
should, hopefully, be as efficient as the Møller–Plesset
PT [1] in the case of a single reference Hartree–Fock
wavefunction. A major issue in MRPT concerns the
definition of a proper zero order Hamiltonian H0. In the
early theories, which were developed at the beginning of
the 1970s, such as CIPSI [2], H0 was defined in terms of
a one-electron, Fock-like, operator and the zero order
functions (referred to as correction functions or, more
succinctly, as perturbers) used to build the first order
correction to the wavefunction, were simple Slater deter-
minants. The idea that H0 should be based on a one-
electron operator is still dominant in most modern
MRPTs. For instance in CASPT2 [3,4], one of the most
successful forms of MRPT, H0 is a projected gener-
alized Fock operator and the perturbers are built in
terms of internally contracted excitations (vide infra).
Dyall [5] showed that the usage of correction func-
tions deriving from a one-electron operator introduces
a bias in the energy calculation since the zero order
reference wavefunction properly takes into consider-
ation the bielectronic interactions occurring among the
active electrons whereas the correction functions are not
allowed to do so. In order to obviate such difficulty Dyall
introduces a model Hamiltonian, partly bielectronic in
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character, which acts as H0. In 2001, based on Dyall’s
work, the “n-electron valence state perturbation theory”
(NEVPT) was put forward [6], in collaboration between
the theoretical chemistry groups of the universities of
Ferrara and Toulouse. NEVPT is based on a zero order
variational wavefunction of Complete Active Space
Configuration Interaction (CAS-CI) type and on cor-
rection functions still of multireference type where the
bielectronic interactions among active electrons are
properly considered. Different formulations of NEV-
PT are possible according to the type of Hamiltonian
employed for the definition of H0 and according to the
degree of contraction of the perturbers.

The following sections are devoted to a review of the
developments that have concerned NEVPT during the
last five years. In order to show the applicability of NEV-
PT, the last section will report calculations, expressly
prepared for this article, on the theoretical description of
the vertical spectrum of the free base porphin molecule.

2 The second order NEVPT approach

2.1 The first order interacting space

NEVPT is based on a reference variational wavefunc-
tion of CAS-CI (usually CASSCF) type. The molecular
orbitals can consequently be divided into three classes:
core orbitals with occupation number always equal to 2
in all the determinants of the CAS, active orbitals with all
possible occupation numbers and virtual orbitals, never
occupied. The core, active and virtual orbitals will be
denoted, respectively, with indices i, j, . . . , a, b, . . . , and
r, s, . . . , (generic orbitals will have indices w, x, . . . ,).

The first order interacting space [7], S, is defined as the
vector space spanned by all the determinants, external
to the CAS, which have nonvanishing interaction with
the zero order multireference wavefunction �

(0)
m . S can

be envisaged as the direct sum of subspaces S(k)

l spanned
by determinants which share the same pattern l of core
and virtual orbitals (referred to collectively as inactive
orbitals) and the same number k of electrons added to
(or removed from) the active space. There are only eight
typologies of S(k)

l subspaces: S(0)
ij,rs with two core orbitals

substituted by two virtuals, S(0)
i,r with one core orbital

substituted by one virtual, S(+1)
ij,r with one core substi-

tuted by one virtual and one core electron added to the
active space, S(+1)

i with one core electron added to the
active space, S(−1)

i,rs with one core orbital substituted by
one virtual and one active electron excited into a virtual,
S(−1)

r with one active electron excited into a virtual, S(+2)
ij

with two core electrons excited to the active space, S(−2)
rs

with two active electrons excited to the virtual space.
The usage of such subspaces with their full dimen-

sionality leads to the “totally uncontracted” NEVPT2.
The zero order correction functions could in princi-
ple be obtained by diagonalizing the electronic Ham-
iltonian within each subspace S(k)

l : P
S(k)

l
HP

S(k)

l
�

(k)

l,µ =
E(k)

l,µ�
(k)

l,µ . Such a choice, anyway, appears as computa-
tionally very expensive, requiring a CAS-CI calculation
for each occurrence of the S(k)

l subspaces. A more viable
approach within the totally uncontracted scheme would
consist in building up the correction functions �

(k)

l,µ with
a model Hamiltonian, simplified with respect to the true
H, but still able to take into account the bielectronic
interactions among the active electrons. A good model
Hamiltonian has been provided by Dyall in an impor-
tant paper in 1995 [5]; the form of Dyall’s Hamiltonian
is the following:

HD = Hi + Hv + C, (1)

where Hi is a one-electron operator defined in terms of
orbital energies and creation/destruction pairs

Hi =
core∑

i

εiEii +
virt∑

r

εrErr, (2)

Hv is a two-electron operator confined to the active
orbital space

Hv =
act∑

ab

heff
ab Eab + 1

2

act∑

abcd

〈ab|cd〉(EacEbd − δbcEad), (3)

and C is a suitable constant assuring that HD is equiv-
alent to H within the CAS space (C = 2

∑core
i hii +∑core

ij (2〈ij|ij〉 − 〈ij|ji〉) − 2
∑core

i εi). In the above for-
mulas use has been made of the spin-traced excitation
operators [8] Ewx = a+

wαaxα + a+
wβaxβ . The quantities

heff
ab appearing in Eq. 3 are the usual one-electron matrix

elements hab supplemented with a contribution allow-
ing for the effective field of the core electrons (heff

ab =
hab + ∑core

j (2〈aj|bj〉 − 〈aj|jb〉)). The orbital energies εi

and εr are usually chosen as those which result from
the canonicalization of the core and virtual orbitals. The
diagonalization of HD within the S(k)

l subspaces is much
simpler than that of H. Let us consider, as an exam-
ple, the S(+1)

ij,r subspaces. The matrix elements of HD are
readily seen to be equivalent, apart from a constant shift
in the diagonal, to those of H for the case of an ionized
molecule with one electron added to the active space.
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In other words, if �
(+1)
µ is the CAS-CI solution to the

problem PionHPion�
(+1)
µ = E(+1)

µ �
(+1)
µ , one has for HD:

�
(+1)
ijr,µ = a+

r ai aj �(+1)
µ ,

HD�
(+1)
ijr,µ =

(
E(+1)

µ + εr − εi − εj

)
�

(+1)
ijr,µ (4)

Similar considerations apply to all the other typologies
of subspaces S(k)

l . The number of diagonalizations is
therefore reduced to that of possible ions with charge k
(−2 ≤ k ≤ 2) with all possible spin couplings and sym-
metry cases. The procedure above outlined is feasible
for CAS of moderate size but appears impractical for
dimensions above a few thousands, which is common
practice in nowadays’ calculations.

2.2 The internally contracted approach

The difficulties met with a totally uncontracted approach
can be substantially alleviated by taking into consid-
eration internally contracted (IC) correction functions.
It has long been recognized [9,10] that if a function
�, external to the CAS, interacts with the reference
wavefunction then 〈�(0)

m |H|�〉 = 〈�(0)
m |H|PIC�〉 where

PIC projects onto the “internally contracted” first order
space, spanned by all the functions EwxEyz�

(0)
m not

belonging to the CAS. Since the second order correction
to the energy can be expressed as E(2)

m = 〈�(0)
m |V|�(1)

m 〉,
it is clear that �

(1)
m can be restricted to belong to the

IC first order space. Hence, the S(k)

l subspaces will be
now restricted to be spanned by functions of the type
EwxEyz�

(0)
m . The advantage of the IC formulation is that

the dimension of a given IC S(k)

l is now much lower than

its uncontracted analog; for instance the IC S(+1)
ij,r sub-

space is spanned by the functions EriEaj�
(0)
m , the number

of which is nact, the number of active orbitals. A minor
disadvantage of the IC approach is that the EwxEyz�

(0)
m

functions are not orthogonal and, generally, not even
linearly independent, so that care has to be taken in
removing the possible linear dependencies.

The “partially contracted” NEVPT (PC–NEVPT2)
consists in building the correction functions as multire-
ference wavefunctions belonging to the various IC S(k)

l
subspaces. One possibility would be to diagonalize the
true Hamiltonian H within each such subspace but this
would be computationally too expensive. The actual
choice adopted in PC-NEVPT2 has been to utilize the
model Hamiltonian HD in the diagonalization: the active
part of HD (Hv) has matrix elements within a given S(k)

l
space which do not depend on the inactive orbital pat-
tern l; for instance in S(+1)

ij,r the matrix elements of Hv are

independent of the choice of the i, j and r indices. On
the other hand, the inactive part Hi only produces an

energy shift within S(k)

l

(
(εr − εi − εj) for S(+1)

ij,r

)
, hence

just one single diagonalization is required to provide
all the possible eigenfunctions of HD for all the IC
S(k)

l subspaces of a given typology. The details for the

diagonalization of HD in the various S(k)

l can be found
in Ref. [11]. Here, we only remember that the general
form of the eigenvalues is: E(k)

l,µ = E(0)
m +�εl + eµ where

�εl equals the difference of the virtual and core orbital
energies involved in the definition of S(k)

l and where

E(0)
m + eµ is the µth eigenvalue of the projection of

Hv onto the IC S(k)

l ; eµ is independent of the inactive
orbitals and represents a physical process occurring in
the active space. So, in the S(+1)

ij,r subspaces, eµ approx-
imates an electron affinity due to an electron passing
from the core to the active space, in the S(+2)

ij subspac-
es the eigenvalues eµ approximate an energy of double
ionization and so on for the other subspaces. The largest
dimensions among the eight typologies of S(k)

l subspaces

are those occurring for S(+1)
i and S(−1)

r . S(+1)
i (S(−1)

r ) is
spanned by the functions EbiEac�

(0)
m (ErbEac�

(0)
m ) the

number of which amounts to n3
act. Such a number is an

upper limit to the true dimension of the two subspac-
es since linear dependencies are generally present. The
S(+1)

i and S(−1)
r subspaces are also the most demanding

with respect to the evaluation of the matrix elements of
the Hv operator since the four-particle density matrix is
required. Anyway, the four-particle density matrix has
indices confined to the active orbitals and its storage in
the memory of the computer does not present serious
difficulties provided that the dimension of the active
space remains sufficiently small. At present nact = 14
is the limit we have set in our NEVPT codes but this
is also a practical limit in most CASSCF calculations.
It can be remarked that the PC-NEVPT2 makes use
of exactly the same functional space as CASPT2 [3,
4] does; the difference between the two approaches is
that PC-NEVPT2 uses multireference correction func-
tions �

(k)

l,µ which are eigenfunctions of a simplified two-

electron Hamiltonian (HD) taking into due account the
bielectronic interactions among the active electrons. The
zero order Hamiltonian of PC-NEVPT can be written as
follows:

HPC
0 = PCASHPCAS +

∑

l,k

P
S(k)

l
HDP

S(k)

l
(5)

where P
S(k)

l
is the projector onto the IC S(k)

l defined

above.
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2.3 The strongly contracted NEVPT2

The NEVPT2 approach can be further simplified by
requiring that a single correction function �

(k)

l be cho-

sen from each IC S(k)

l subspace. �
(k)

l is chosen by the
following projection:

�
(k)

l = P
S(k)

l
H�(0)

m . (6)

The correction functions thus obtained are orthogonal
(but not normalized to one) and can be used to build a
perturbation series; the energy pertaining to �

(k)

l can be
defined by a Rayleigh quotient

E(k)

l = 〈�(k)

l |H|�(k)

l 〉
〈�(k)

l |�(k)

l 〉
. (7)

Such a formula can be further simplified by substituting
the true Hamiltonian H with the model HD. The result-
ing formulation has been called “strongly contracted”
NEVPT (SC-NEVPT2) and is the first approach that
has been practically implemented [12,11]. It should be
noticed that, despite their low number, the �

(k)

l func-
tions can be considered to be, in a sense, complete for
the construction of a second order perturbation the-
ory; actually, it is easily verified that a given function �

belonging to S(k)

l and orthogonal to �
(k)

l has no inter-

action with �
(0)
m : 〈�(0)

m |H|�〉 = 0. The zero order Ham-
iltonian of SC-NEVPT can be expressed as a spectral
decomposition

HSC
0 = PCASHPCAS +

∑

l,k

∣∣∣�(k)′
l

〉
E(k)

l

〈
�

(k)′
l

∣∣∣ (8)

where �
(k)′
l = �

(k)

l /‖�(k)

l ‖. The second order contribu-
tion to the energy, as shown in Ref. [11], can be conve-
niently expressed as

E(2)
m =

∑

l,k

‖�(k)

l ‖2

E(0)
m − E(k)

l

. (9)

The detailed expressions of the norms ‖�(k)

l ‖ in terms of
the two-electron integrals and spinless density matrices
of various particle rank are reported in Ref. [11]. Despite
the low number of correction functions employed, the
SC-NEVPT2 usually yields results very similar to those
of the more accurate PC-NEVPT2, implying that the
averaging process which is inherent in the strongly con-
tracted approach is rather effective. An interesting
inequality was proved in Ref. [11], showing that, for

each S(k)

l subspace, the contribution to the second order
correction to the energy of PC-NEVPT2 is always lower
(negative and larger in absolute value) than that of
SC-NEVPT2. Cases of significant discrepancies between
SC- and PC-NEVPT2 are usually indicative of some
defect in the zero order wavefunction �

(0)
m such as, for

instance, an inaccurate selection of the active orbitals.

3 Properties of the NEVPT2 approaches

3.1 Invariance under unitary transformations
of orbitals and size consistence

Each S(k)

l subspace is a complete active space and is
therefore invariant under an arbitrary rotation of the
active orbitals. Such a property remains true passing
from the uncontracted definition of S(k)

l either to the
internally contracted one or also to the one-dimensional
subspaces spanned by the strongly contracted correc-
tion functions. As a consequence, the zero order Hamil-
tonian used in the various NEVPT2 approaches, either
with the true or with the model Hamiltonian, is invariant
under rotation of the active orbitals and the correction
to the energy (and to the wavefunction) to any order of
perturbation shares this important invariance property.
As regards the behaviour of NEVPT with respect to the
inactive orbitals, we notice that the form of the model
Hamiltonian HD given in Eq. 1 is clearly not invariant
under rotation of the core or virtual orbitals. A sim-
ple modification guaranteeing the invariance is given by
redefining the inactive part of HD

H′
i =

core∑

ij

fijEij +
virt∑

rs

frsErs (10)

where fij and frs are elements of generalized Fock
matrices

fij = −〈ai �(0)
m |H|aj �(0)

m 〉 + δijE(0)
m (11)

frs = 〈a+
r �(0)

m |H|a+
s �(0)

m 〉 − δrsE(0)
m (12)

If the inactive orbitals are chosen so as to diagonalize
the Fock matrices (canonical orbitals), one goes back
to the original definition of HD. Sometimes it may be
convenient to use noncanonical inactive orbitals, as, for
instance, when working with a priori localized orbi-
tals [13]. In such cases one can use the modified Dyall’s
Hamiltonian of Eq. 10, with the following redefinition
of H0
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H0 = PCASHPCAS +
∑

l,k
l′k′

P
S(k)

l
HDP

S(k′)
l′

(13)

The coupling between different S(k)

l spaces is dealt with
very simply because the matrix elements of H′

i can only
occur between functions of S(k)

l subspaces belonging to

the same typology (for instance S(+1)
ij,r has matrix ele-

ments only with S(+1)

i′j,r or with S(+1)

ij,r′ ). Such noncanonical
PC-NEVPT2 approach has been implemented in our
laboratory by solving the perturbation equations in the
form of a system of linear equations

�(1)
m =

∑

l,k,µ

c(k)

lµ �
(k)

l,µ

∑

l′k′µ′
c(k′)

l′µ′ 〈�(k)

l,µ |H0 − E(0)
m |�(k′)

l′,µ′ 〉 = −〈�(k)

l,µ |V|�(0)
m 〉

where the �
(k)

l,µ functions are obtained by a preliminary
PC-NEVPT2 calculation making use of only the diago-
nal elements of the Fock matrices. It should be remarked
that in the strongly contracted approach the zero order
Hamiltonian is not invariant under rotation of the core
or virtual orbitals; in our codes we make use of the
canonical orbitals for the SC-NEVPT variant. Further-
more, it is worth remembering that NEVPT is not invari-
ant under rotations between active and inactive orbitals
and care must be devoted to a proper choice of the
active space so as to avoid possible exchanges of the
identities of the orbitals which might occur, for instance,
following the changes of the geometrical parameters of
a molecule.

A direct consequence of the above discussed invari-
ance is that, as shown in Ref. [6], the NEVPT2
approaches based on Dyall’s Hamiltonian enjoy the
valuable property of size consistence in the form of strict
separability: the energy of two noninteracting systems
A and B is the same whether calculated in the supermol-
ecule approach or evaluated as the sum of the two sepa-
rated systems. If the true Hamiltonian were used instead
of HD, this property would generally cease to be true
in the case of a system composed of two identical parts;
in order to recover the strict separability, use should be
made of orbitals localized in the two fragments.

3.2 Absence of intruder states

In a perturbation theory the “intruder states” are those
correction functions which have an energy (eigenvalue
of H0) close to the reference energy E(0)

m , thus caus-
ing near divergences in the perturbation summation.
The presence of intruder states is a notorious Achilles’
heel in MRPT’s based on a one-electron zero order

Hamiltonian: the inability in correctly describing the
two-electron interactions between the correction func-
tions affects the description of the energies of the
perturbers. In the CIPSI method [2], where simple deter-
minants are used as perturbers, a remedy against the
intruder states is afforded by the usage of Epstein–
Nesbet [14,15] denominators, at the cost of a worsening
of the size consistence properties. In CASPT2 a partial
ad hoc solution to the intruder state problem is given by
the adoption of energy shifts in the denominators [16],
which are anyway difficult to justify in physical terms.

The correction functions used in NEVPT2, in all its
variants, are practically exempt from the intruder state
phenomenon. Taking for instance the PC-NEVPT2 with
Dyall’s Hamiltonian, one has for the energy associated
to �

(k)

l,µ

E(k)

l,µ = E(0)
m + �ε

(k)

l + eµ. (14)

�ε
(k)

l and eµ are both positive quantities with eµ rep-
resenting the energy of a well defined physical pro-
cess occurring in the active space (such as an ionization
potential, an electron affinity, an electronic excitation,
etc.). The subspaces which appear as more exposed to
the possibility of intruder states are those of type S(−1)

r .
The energies are here E(−1)

r = E(0)
m + εr + eµ. If r refers

to a very diffuse orbital, its energy εr is close to zero;
eµ describes an ionization in the active space and could
be very small only for a highly excited state. Thus, the
possibility of being affected by intruder states appears
as rather remote in PC-NEVPT2 (but similar consid-
erations also apply to SC-NEVPT2) and, actually, we
have never met with divergences in all the calculations
carried out thus far.

3.3 Spin properties

The first order correction to the wavefunction �
(1)
m , is

expressed in terms of the �
(k)

l,µ perturbers in PC-NEVPT2

(�(k)

l in SC-NEVPT2). Such correction functions are
built by the application of products of spin-traced exci-
tation operators EwxEyz to �

(0)
m . Since the Ewx operators

commute with the square of the total spin operator and
with its projection onto the z axis, �

(1)
m is a pure spin

function and has the same spin eigenvalues as �
(0)
m .

3.4 Reduction to MP2

Dyall’s model Hamiltonian HD represents a natural
extension of the zero order Møller–Plesset (MP) HMP

0
and it coincides with HMP

0 in case the active space is
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empty. Hence the two variants of NEVPT2 based on
HD reduce to MP2 if a Hartree–Fock determinant is
chosen as zero order wavefunction. The two variants
based on the true Hamiltonian would instead reduce to
the Epstein–Nesbet second order PT.

4 Quasidegenerate NEVPT2

The MRPT thus far presented belongs to the so-called
“diagonalize-then-perturb” approach, where the first
order correction to the wavefunction brings no modi-
fication to the zero order variational reference. In some
circumstances, though, the coefficients of the configura-
tions which make up the variational wavefunction turn
out to be rather poorly described, lacking important
differential correlation contributions; typical cases are
the avoided crossings between neutral and ionic states as
well as electronically excited states of mixed valence—
Rydberg character. Such cases are conveniently dealt
with by the use of a quasidegenerate perturbation the-
ory [17–20] (QDPT) where the required redefinition of
the coefficients is carried out by the diagonalization of an
effective Hamiltonian in a configuration space of limited
dimension. A quasidegenerate formulation of NEVPT2
has been given in Ref. [21] for both the strongly and par-
tially contracted approaches (QD-SCNEVPT2 and QD-
PCNEVPT2) with use of the model Hamiltonian HD.
In the QD-NEVPT2 approach a model space is chosen
by selecting as basis set a few solutions of the CAS-CI
problem {�(0)

1 , �(0)
2 , . . . , �(0)

g } with PCASHPCAS�
(0)
m =

E(0)
m �

(0)
m . The purpose of the QDPT is to find the pro-

jections of the true eigenfunctions onto the model space
with the use of an effective Hamiltonian

Heff�̃m = Em�̃m, (15)

where �̃m = P�m, P = ∑g
k=1

∣∣∣�(0)

k

〉 〈
�

(0)

k

∣∣∣ and Em is

the true eigenvalue associated to the true eigenfunction
�m. Introducing the wave operator � by the relation
��̃m = �m, the effective Hamiltonian can be written
as Heff = PH� and � can be obtained by solving the
generalized Bloch equation

�PH� − H� = 0; (16)

expanding � and Heff in a perturbation series

� = P + �(1) + �(2) + · · · (17)

Heff = H(0)

eff + H(1)

eff + H(2)

eff + · · · (18)

one obtains
[
�(1), H0

] = QVP, H(0)

eff = PH0P, H(1)

eff =
PVP = 0, H(2)

eff = PV�(1). Working formulas for �(1)

and H(2)

eff can be obtained using the correction functions

�
(k)

l,µ (for the PC-NEVPT) or �
(k)

l (for the SC-NEVPT).
Since, the two NEVPT forms are state-specific theories,
with H0 depending on a given reference wavefunction
�

(0)
m , a dilemma arises as to which correction functions

should be used. The question is answered by Zaitsev-
ski and Malrieu’s [22] multipartitioning technique which
allows one to use different partitions of the Hamiltonian
according to the various �

(0)
m functions of the model

space H = H0(m) + V(m) with

H0(m) = PCASHPCAS +
∑

l,k,µ

∣∣∣�(k)

l,µ (m)
〉

E(k)

l,µ

〈
�

(k)

l,µ (m)

∣∣∣ ,

(19)

where �
(k)

l,µ (m) are the correction functions of the IC

S(k)

l relating to the �
(0)
m reference. The matrix elements

of Heff up to second order are given by

〈�(0)
n |Heff|�(0)

m 〉

=E(0)
m δmn+

∑

l,k,µ

〈�(0)
n |H|�(k)

l,µ (m)〉〈�(k)

l,µ (m)|H|�(0)
m 〉

E(0)
m − E(k)

l,µ(m)
.

(20)

The diagonalization of the nonhermitian Heff matrix
produces the desired mixing within the model space

�̃m =
g∑

k=1

�
(0)

k ckm, Heffcm = Emcm.

From a computational point of view, the matrix ele-
ments appearing in Eq. 20 require, besides the quan-
tities employed in the single state NEVPT2, also the
evaluation of the transition density matrix of particle
rank not higher than three. Altogether, the QD-NEV-
PT2 approach requires little extra effort beyond the cal-
culations needed in the separate g single state NEVPT2
evaluations.

5 Third order NEVPT and internally contracted CI

The first order correction to the wavefunction can be
used to determine up to the third order correction to
the energy

E(3)
m = 〈�(1)

m |V|�(1)
m 〉 − E(1)

m ‖�(1)
m ‖2 (21)

and in NEVPT the last term on the rhs of the above
equation is null since E(1)

m = 0. In the strongly and
partially contracted approaches �

(1)
m is expanded on a
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rather limited set of correction functions and, as was for-
merly shown by Werner [23] in his CASPT3 formulation,
the task of building a third order algorithm can be
attained without excessive computational effort. Besides
its intrinsic value, a third order approach would consti-
tute an important test to judge on the efficiency and sta-
bility of the perturbation series: too large a discrepancy
between the second and third order result would be a
clear clue of the inadequacy of the zero order wavefunc-
tion. In order to utilize Eq. 21 one needs the matrix ele-
ments of the true Hamiltonian between the correction
functions. In the internally contracted approaches, the
matrix elements of H between IC functions EwxEyz�

(0)
m

are required. In principle, no new quantities with respect
to the NEVPT2 formulations are necessary since a given
matrix element, as is readily recognized, can be writ-
ten in terms of density matrices of particle rank not
exceeding four. The awkward task of delivering all the
required matrix elements between IC functions has been
entrusted to a symbolic program dubbed FRODO
[24,25] (an acronym for “formal reduction of density
operators”), written in the computer algebra system
MuPAD [26]. An implementation of the third order
approach in the strongly contracted variant (SC-
NEVPT3) has been recently presented [27] and a code
with the partially contracted formulation is currently
being tested. In the third order calculations carried out
thus far [27–30], the third order correction is usually
very small in comparison with the second order one.
A remarkable exception has been encountered in the
study of the Cr2 potential energy curve [27], where a
large third order correction takes place, in some mea-
sure upsetting the description obtained at second order
and revealing the inadequacy of the zero order
description.

The knowledge of the matrix elements of H between
the correction functions makes it possible to build a
completely variational calculation where the trial wave-
function is expressed as a linear combination in the form

�trial
m = c0�

(0)
m +

∑

l,k,µ

c(k)

lµ �
(k)

l,µ . (22)

In the case of the partially contracted approach such an
expansion corresponds to an internally contracted con-
figuration interaction (IC–CI) [31] limited to the sin-
gle and double contracted excitations of �

(0)
m . IC–CIs

are expected to show the same disadvantages present
in the more common single reference SD–CI calcula-
tions; in particular they lose the size consistence prop-
erty enjoyed by the NEVPT approach. An example
of IC–CI is provided in Ref. [27], concerning the Cr2

potential energy curve, where the IC–CI result is shown
to parallel the third order description.

6 Implementations of NEVPT

NEVPT has been implemented for the contracted
approaches with use of Dyall’s Hamiltonian. SC-
NEVPT2 and PC-NEVPT2 have been incorporated in
the molecular electronic structure program DALTON
[32]. Stand-alone versions of the same codes can be
interfaced, besides to DALTON, to the MOLCAS pack-
age [33] and this is also the case for the quasidegenerate
approach (QD-SCNEVPT2 and QD-PCNEVPT2) and
for the third order formulation SC-NEVPT3
(PC-NEVPT3 is being tested at present). All the codes
have been parallelized. Furthermore, versions of the
programs are available where, in the perturbation expan-
sion, the energy denominators are calculated employing
the true Hamiltonian instead of HD (Epstein–Nesbet
denominators): such approach, which is generally lack-
ing in the size consistence property, is occasionally used
for comparison purposes. In general a NEVPT2 calcula-
tion, no matter whether single state or quasidegenerate,
can be done if the corresponding CASSCF is possible.
The most important limiting factor in NEVPT2 is given
by the size of the active space and by the consequent
dimension of the four-particle spinless density matrix.
The third order NEVPT can be a rather large calcula-
tion, depending on the overall dimension of the orbital
basis set, and has been built with a parallelized imple-
mentation.

7 An application to the absorption spectrum of free
base porphin

An important domain of applications of the NEVPT
approach is the calculation of the electronically excited
states of molecules. Previous studies have concerned
the electronic transitions in simple carbonyl compounds
[34,35], the Rydberg-valence mixing in the lowest
excited states of ethene [21] and formaldehyde [36], the
vertical transitions in pyrrole [28], furan [30] and in a
model for plastocyanine [37].

In order to show the applicability of the method, we
present in this section NEVPT2 calculations for the ver-
tical spectrum of the free base porphin molecule.

Due to their central rôle in a great deal of biological
phenomena, such as the photosynthesis and the oxygen
absorption and transport processes, the photochemical
and photophysical properties of the porphyrins have
been extensively studied [38–40]. A particular atten-
tion has been obviously paid to the experimental and
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theoretical investigation of the electronic spectrum of
free base porphin (FBP), the basic building block of
the porphyrins and related systems. Since the FBP has
become tractable for correlated theoretical methods, a
consistent number of studies has been published, among
which we quote the most recent SAC–CI [41–43],
STEOM–CC [44,45], MRPT [46,47], MRMP [48] and,
finally, TD–DFT [39,49–52] calculations. Certainly, FBP,
with its valence π system composed of 24 orbitals and 26
electrons, represents a severe challenge for highly accu-
rate ab initio calculations, at the level, for instance, of
coupled cluster or multireference perturbation theory
and despite the large number of published studies some
spectral assignments are still debated.

The most investigated portion of the absorption
spectrum extends from �2 to �5.5–6.0 eV and is char-
acterized by three principal regions [53–55]. The low-
est-energy band (1.98–2.42 eV), the so-called Q band, is
composed of two peaks, designated, according to their
polarization, as Qx and Qy bands. The most intense
absorption region, known as Soret Band (or B band)
is located in the range between 3.13 and 3.33 eV and a
shoulder on its high-energy tail is instead called N band
(3.65 eV). Finally, two weak and broad peaks (L and M
bands) appear at 4.25 and 5.50 eV.

The traditional interpretation of the first two bands
(Q and B) is based on the “four-orbital model” intro-
duced by Gouterman and co-workers [56–58] in the
1960s. According to this model, the low-energy region
of the spectrum can be explained in terms of single
excitations from the two highest occupied MOs (5b1u
and 2au in the D2h symmetry group) to the two low-
est unoccupied MOs (4b2g and 4b3g) (Fig. 1). So, if the
molecule is placed in the xy plane with the x axis pass-
ing along the pyrrolic hydrogens, the x and y compo-
nents of the Q band should be ascribed to the 11B3u

and 11B2u states, respectively; the 21B3u and 21B2u tran-
sitions are instead responsible for the B band. Although
Gouterman’s model holds for the interpretation of the
Q band, it has proved to fail for the B band, where
excitations from the lower b1u orbitals play a non
negligible rôle.

The geometry of the ground state of FBP was opti-
mized at B3LYP/6-31G∗ level, imposing D2h symmetry,
which, on the basis of previous theoretical calculations
[59,60], was shown to be the most stable one. Follow-
ing the convention adopted in most previous theoretical
works, the molecule has been placed in the xy plane
with the two internal hydrogens along the x axis (Fig. 2).
All the calculations were carried out with a 6-31G∗
basis set [61], consisting of 364 basis functions. In the
perturbative calculations here reported, the zero order
description was attained using two different active

Fig. 1 HOMO (2au), HOMO-1 (5b1u), LUMO (4b3g) and
LUMO+1 (4b2g) MOs of Free Base Porphin

Fig. 2 Molecular structure of Free Base Porphin (FBP)

spaces, named CAS(4/4) and CAS(14/13), where the
notation (m/n) indicates, as usual, m active electrons
and n active orbitals. In all the calculations, the 24 1s
orbitals were kept frozen at the CASSCF level. The
detailed composition of the two active spaces is given in
Table 1, where the number of the computed states is also
reported. In the CAS(4/4) calculations the zero order
wave function was obtained from single-root CASSCF
calculations, whereas with the CAS(14/13) space, state-
averaged CASSCF optimizations were performed. The
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Table 1 Active spaces, basis set and number of states used in the CASSCF calculations

Basis set Active space Compositiona Number of states

B3u B2u

6–31G∗ CAS(4/4)b 5b1u,4b2g,4b3g,2au 2 2
CAS(14/13)c 3–5b1u,3–6b2g,3–6b3g,1–2au 4 4

a At the SCF level the ground state electronic configuration is 20ag17b3u17b2u14b1g5b1u3b2g3b3g2au
b Single-state CASSCF calculations
c State-averaged CASSCF calculations

excitation energies were obtained with respect to the
corresponding ground state 11A1g, which was calculated
both for the CAS(4/4) and CAS(14/13) spaces.

In Table 2 the CASSCF and NEVPT2 excitation ener-
gies are gathered and compared with those computed in
the most recent theoretical studies; the experimental
data are also reported. Before discussing in detail the
interpretation of the spectrum, some general remarks
are possible. First of all, contrary to the trend observed
in the results of the other ab initio methods [42,45–
47], that, with the exception of the TD–DFT calcu-
lations [39,51], seem to overestimate the correlation
energy of the 11B3u state with respect to the ground
state, the NEVPT2 excitation energies turn out to be
slightly higher than the experimental values; a simi-
lar behaviour is also noticed for the 11B2u state. Also,
while a perfect accordance, with differences not exceed-
ing 0.03 eV, can be observed between the SC and PC
transition energies in the CAS(4/4) calculation, signifi-
cant deviations are found using the larger active space.
The different behaviour in the second order correction
between the two NEVPT variants, can be understood
considering the increasing accuracy of the PC approach,
involving a much larger number of perturbation func-
tions with respect to the SC case, as the size of the active
space increases. Actually, as is apparent, these deviations
are more consistent for the higher excited states and
the maximum value (0.43 eV) is obtained for the 41B3u

state. These increasing discrepancies are a clear indica-
tor of the inadequacy of such an active space, including
only 13 valence π orbitals (slightly more than half of
the complete π valence space), to describe high-energy
excited states. Then, it should be considered that the use
of molecular orbitals not fully optimized, but obtained
from state-averaged calculations, possibly contributes to
the defective zero order description.

The most accurate NEVPT results predict the ver-
tical transition to the 11B3u and 11B2u states at 2.05
and 2.56 eV (CAS(14/13) calculation), in remarkable
accordance with the experimental values of 1.98–2.02

(Qx) and 2.33–2.42 eV (Qy). Also, we note that, for the
Q band, the results obtained from the “four-orbitals”
based calculations (CAS(4/4) space) can be regarded as
satisfactory. Moreover, the splitting between the 11B3u

and 11B2u states, computed to be 0.47 eV, at the PC level,
fully agrees with the observed value of 0.44 eV [55].

If on the one hand the Q band assignment is, alto-
gether, well established, on the other hand the interpre-
tation of the B band is still debated in the literature.
In fact, according to Gouterman’s model [56–58] two
components, with perpendicular polarizations, should
be distinguished: the Bx and By bands, arising from the
21B3u and 21B2u states, respectively. The line splitting
between the two components of the B band, measured
at low temperature [53], amounts to 0.03 eV. This tra-
ditional interpretation, supported by some experimen-
tal evidence [54], as well as by the CASPT2 [46,62],
TD–DFT [51] and MRPT [47] calculations, was however
questioned by Nakatsuji et al. [41] and Tokita et al. [42],
who, on the basis of their SAC–CI calculations, assigned
the 21B3u state to the B band, but the 21B2u state to the
N band, appearing as a shoulder to the intense B band.
Nevertheless, the SAC–CI oscillator strengths of the two
transitions, not matching with the spectrum profile, seem
to be a weak point of their conclusions (see Ref. [45]).

The PC-NEVPT2(4/4) results locate the 21B3u state
at 3.22 eV and the 21B2u state at 3.30 eV, predicting a
splitting of 0.08 eV, slightly greater then the experimen-
tal value of 0.03 eV. A small reduction of this splitting is
observed in the CAS(14/13) calculations, where the two
states are computed, at the PC level, at 3.30 and 3.35 eV,
respectively, in reasonable agreement with experiments
(3.13–3.33 eV). While the description of the 21B2u state
provided by the CAS(4/4) calculations is comparable to
that obtained using the larger active space, this is not
the case for the 21B3u state. Indeed, as shown in Table 3,
while, with both active spaces, the reference wavefunc-
tion of the 21B2u state is dominated by the 5b1u → 4b3g

and 2au → 4b2g configurations, in the larger calculation,
the 21B3u state is also described by the 4b1u → 4b3g
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Table 2 Vertical excitation energies of the first four excited states of B3u and B2u symmetries of free base porphin compared with other
theoretical results and experimental data

Method Excited states

11B3u 11B2u 21B3u 21B2u 31B3u 31B2u 41B3u 41B2u

CAS(4/4)

CASSCF 3.48 3.71 5.08 5.12
SC-NEVPT2 2.05 2.53 3.25 3.33
PC-NEVPT2 2.04 2.51 3.22 3.30

CAS(14/13)

CASSCF 3.12 3.80 4.72 5.22 5.74 6.15 7.52 6.27
SC-NEVPT2 2.21 2.76 3.49 3.62 4.10 4.40 4.93 4.47
PC-NEVPT2 2.05 2.56 3.30 3.35 3.84 4.13 4.50 4.10

Previous works
CASPT2 [46] 1.63 2.11 3.12 3.08 3.53 3.42 4.04 3.96
MRPT2 [47] 1.73 2.25 2.96 3.02
SAC–CI [42] 1.75 2.23 3.56 3.75 4.24 4.52 5.45 5.31
STEOM–CC [45] 1.72 2.61 3.66 3.77 4.28 4.67 5.38 5.26
TD–DFT [51] 2.16 2.29 2.98 3.01 3.47 3.41 3.76 3.77
TD–DFT [39] 2.27 2.44 3.33 3.41 3.61 3.56 3.89 3.89

Expt. values
1.98–2.02a 2.33–2.42a 3.13–3.33b 3.13–3.33b 3.65c 4.25c

Assignment Qx Qy Bx By N L

a Refs. [55,63,64]
b Refs. [53,55,64]
c Ref. [55]

excitation (22%), not considered in Gouterman’s four-
orbital model.

The interpretation of the two higher-energy bands is
certainly more complex and also the experimental evi-
dence is less clear. Moreover, as shown by Gwaltney and
Bartlett [45], in this region of the spectrum (4.5–5 eV)
the Rydberg transitions are expected to start. By now,
the firmest assignment, suggested by Serrano-Andrès
et al. [46], is that the N band has to be ascribed to
the pair of states 31B3u−31B2u and, analogously, the
so-called L band is assigned to the 41B3u−41B2u states.
However, as apparent in Table 2, quite a conflicting pic-
ture emerges from the results of the various theoretical
methods, with differences in the computed excitation
energies greater than 1 eV. At the partially contracted
level, the 31B3u−31B2u states are computed at 3.84–
4.13 eV, whereas the other pair of states 41B3u−41B2u

is located at 4.50–4.10 eV. Our results, over all, are con-
sistent with the CASPT2 interpretation, since the larg-
est deviation between the PC-NEVPT2 and CASPT2
amounts roughly to 0.7 eV (31B2u state). Nevertheless,
a too sizable splitting, with respect to that computed by
Serrano-Andrés et al. [46], is found between the compo-
nents of each pair of states. However, at the present stage

of calculation, since the ground state geometry, basis set
and, above all, the active space used for this study are
not the same as in Ref. [46], and hence also the nature
of the excited states computed is not exactly the same,
the direct comparison with the CASPT2 results should
be regarded with care.

8 Conclusions

This article has been concerned with an analysis of the
main features and developments of the NEVPT
approach. The various possibilities which arise from the
utilization of correction functions with different degree
of contraction and from the use of either the true or a
model Hamiltonian, have been considered. While the
totally uncontracted approaches, even with the simpli-
fication afforded by the use of Dyall’s model Hamil-
tonian, appear as computationally too expensive, the
adoption of contracted perturbers has led to a viable
and efficient MRPT. The partially contracted and the
strongly contracted formulations of NEVPT with the use
of Dyall’s Hamiltonian, have been shown to be endowed
with the two remarkable properties of size consistence
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Table 3 Analysis of the CASSCF wave function composition

CAS(4/4) CAS(14/13) CAS(4/4) CAS(14/13)

State Config. Weight Config. Weight State Config. Weight Config. Weight
(%) (%) (%) (%)

11B3u 5b1u → 4b2g 43 5b1u → 4b2g 46 11B2u 5b1u → 4b3g 40 5b1u → 4b3g 41
2au → 4b3g 55 2au → 4b3g 42 2au → 4b2g 58 2au → 4b2g 51

21B3u 5b1u → 4b2g 52 5b1u → 4b2g 25 21B2u 5b1u → 4b3g 55 5b1u → 4b3g 43
2au → 4b3g 39 4b1u → 4b2g 22 2au → 4b2g 36 2au → 4b2g 37

2au → 4b3g 35

31B3u 5b1u → 4b2g 37 31B2u 4b1u → 4b3g 56
4b1u → 4b2g 34 3b1u → 4b3g 20
2au → 4b3g 9

41B2u 3b1u → 4b2g 87 41B2u 4b1u → 4b3g 66
5b1u → 4b3g 14

Only the configurations with weight greater than 5% are considered

and absence of intruder states. The relatively low num-
ber of correction functions and the possibility of a practi-
cal and efficient evaluation of the matrix elements of the
Hamiltonian between internally contracted functions,
has made it possible to open the way to the third order
NEVPT formulation and to a form of internally con-
tracted configuration interaction. In order to show the
applicability of the NEVPT approach to a non trivial
case, the calculation of the vertical excitation spectrum
of the biologically important free base porphin mole-
cule has been presented, showing good accordance with
previous theoretical evaluations and with experiment.
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